3 open import Data.Bool hiding (_≟_)
6 open import Data.List hiding (replicate)
7 open import Data.Product hiding (zip ; map)
9 open import Relation.Nullary
10 open import Relation.Binary.Core
15 NatMap A = List (ℕ × A)
17 lookup : {A : Set} → ℕ → NatMap A → Maybe A
19 lookup n ((m , a) ∷ xs) with n ≟ m
20 lookup n ((.n , a) ∷ xs) | yes refl = just a
21 lookup n ((m , a) ∷ xs) | no ¬p = lookup n xs
23 notMember : {A : Set} → ℕ → NatMap A → Bool
24 notMember n m = not (maybeToBool (lookup n m))
26 -- For now we simply prepend the element. This may lead to duplicates.
27 insert : {A : Set} → ℕ → A → NatMap A → NatMap A
28 insert n a m = (n , a) ∷ m
30 fromAscList : {A : Set} → List (ℕ × A) → NatMap A
32 fromAscList ((n , a) ∷ xs) = insert n a (fromAscList xs)
34 empty : {A : Set} → NatMap A
37 union : {A : Set} → NatMap A → NatMap A → NatMap A
39 union ((n , a) ∷ xs) m = insert n a (union xs m)
43 checkInsert : {A : Set} → ((x y : A) → Dec (x ≡ y)) → ℕ → A → NatMap A → Maybe (NatMap A)
44 checkInsert eq i b m with lookup i m
45 checkInsert eq i b m | just c with eq b c
46 checkInsert eq i b m | just .b | yes refl = just m
47 checkInsert eq i b m | just c | no ¬p = nothing
48 checkInsert eq i b m | nothing = just (insert i b m)
50 assoc : {A : Set} → ((x y : A) → Dec (x ≡ y)) → List ℕ → List A → Maybe (NatMap A)
51 assoc _ [] [] = just empty
52 assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs)
55 generate : {A : Set} → (ℕ → A) → List ℕ → NatMap A
57 generate f (n ∷ ns) = insert n (f n) (generate f ns)
59 -- this lemma is probably wrong, because two different NatMaps may represent the same semantic value.
60 lemma-1 : {τ : Set} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : ℕ → τ) → (is : List ℕ) → assoc eq is (map f is) ≡ just (generate f is)
61 lemma-1 eq f [] = refl
62 lemma-1 eq f (i ∷ is′) = {!!}
64 idrange : ℕ → List ℕ
66 idrange (suc n) = zero ∷ (map suc (idrange n))
68 bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B))
69 bff get eq s v = let s′ = idrange (length s)
70 g = fromAscList (zip s′ s)
71 h = assoc eq (get s′) v
72 h′ = maybe′ (λ jh → just (union jh g)) nothing h
73 in maybe′ (λ jh′ → just (map {!!} s′)) nothing h′