reduce usage of sym
[~helmut/bidiragda.git] / Bidir.agda
1 module Bidir where
2
3 open import Data.Bool hiding (_≟_)
4 open import Data.Nat
5 open import Data.Fin
6 open import Data.Fin.Props renaming (_≟_ to _≟F_)
7 open import Data.Maybe
8 open import Data.List hiding (replicate)
9 open import Data.Vec hiding (map ; zip ; _>>=_) renaming (lookup to lookupVec)
10 open import Data.Product hiding (zip ; map)
11 open import Function
12 open import Relation.Nullary
13 open import Relation.Nullary.Negation
14 open import Relation.Binary.Core
15 open import Relation.Binary.PropositionalEquality
16 open Relation.Binary.PropositionalEquality.≡-Reasoning
17
18 _>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
19 _>>=_ = flip (flip maybe′ nothing)
20
21 fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
22 fmap f = maybe′ (λ a → just (f a)) nothing
23
24 module FinMap where
25
26   FinMapMaybe : ℕ → Set → Set
27   FinMapMaybe n A = Vec (Maybe A) n
28
29   lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A
30   lookupM = lookupVec
31
32   insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A
33   insert f a m = m [ f ]≔ (just a)
34
35   empty : {A : Set} {n : ℕ} → FinMapMaybe n A
36   empty = replicate nothing
37
38   fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A
39   fromAscList []             = empty
40   fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)
41
42   FinMap : ℕ → Set → Set
43   FinMap n A = Vec A n
44
45   lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A
46   lookup = lookupVec
47
48   fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A
49   fromFunc = tabulate
50
51   union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n  A → FinMap n A
52   union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1))
53
54 open FinMap
55
56 EqInst : Set → Set
57 EqInst A = (x y : A) → Dec (x ≡ y)
58
59 checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
60 checkInsert eq i b m with lookupM i m
61 checkInsert eq i b m | just c with eq b c
62 checkInsert eq i b m | just .b | yes refl = just m
63 checkInsert eq i b m | just c  | no p    = nothing
64 checkInsert eq i b m | nothing = just (insert i b m)
65
66 assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
67 assoc _  []       []       = just empty
68 assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b)
69 assoc _  _        _        = nothing
70
71 generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
72 generate f is = fromAscList (zip is (map f is))
73
74 lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → lookupM f m ≡ just a → m ≡ insert f a m
75 lemma-insert-same []               ()      a p
76 lemma-insert-same (.(just a) ∷ xs) zero    a refl = refl
77 lemma-insert-same (x ∷ xs)         (suc i) a p    = cong (_∷_ x) (lemma-insert-same xs i a p)
78
79 lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing
80 lemma-lookupM-empty zero    = refl
81 lemma-lookupM-empty (suc i) = lemma-lookupM-empty i
82
83 lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y
84 lemma-from-just refl = refl
85
86 lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → lookupM i (insert i a m) ≡ just a
87 lemma-lookupM-insert zero    _ (_ ∷ _)  = refl
88 lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs
89
90 lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m)
91 lemma-lookupM-insert-other zero    zero    a m p = contradiction refl p
92 lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl
93 lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl
94 lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p)
95
96 lemma-lookupM-generate : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → lookupM i (generate f is) ≡ just a → f i ≡ a
97 lemma-lookupM-generate {A} i f [] a p with begin
98   just a
99     ≡⟨ sym p ⟩
100   lookupM i (generate f [])
101     ≡⟨ refl ⟩
102   lookupM i empty
103     ≡⟨ lemma-lookupM-empty i ⟩
104   nothing ∎
105 lemma-lookupM-generate i f [] a p | ()
106 lemma-lookupM-generate i f (i' ∷ is) a p with i ≟F i'
107 lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
108    just (f i)
109      ≡⟨ sym (lemma-lookupM-insert i (f i) (generate f is)) ⟩
110    lookupM i (insert i (f i) (generate f is))
111      ≡⟨ refl ⟩
112    lookupM i (generate f (i ∷ is))
113      ≡⟨ p ⟩
114    just a ∎)
115 lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i f is a (begin
116   lookupM i (generate f is)
117     ≡⟨ lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2 ⟩
118   lookupM i (insert i' (f i') (generate f is))
119     ≡⟨ refl ⟩
120   lookupM i (generate f (i' ∷ is))
121     ≡⟨ p ⟩
122   just a ∎)
123
124 lemma-checkInsert-generate : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (generate f is) ≡ just (generate f (i ∷ is))
125 lemma-checkInsert-generate eq f i is with lookupM i (generate f is) | inspect (lookupM i) (generate f is)
126 lemma-checkInsert-generate eq f i is | nothing | _ = refl
127 lemma-checkInsert-generate eq f i is | just x | Reveal_is_.[_] prf with lemma-lookupM-generate i f is x prf
128 lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl with eq (f i) (f i)
129 lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | yes refl = cong just (lemma-insert-same (generate f is) i (f i) prf)
130 lemma-checkInsert-generate eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | no p = contradiction refl p
131
132 lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
133 lemma-1 eq f []        = refl
134 lemma-1 eq f (i ∷ is′) = begin
135   (assoc eq (i ∷ is′) (map f (i ∷ is′)))
136     ≡⟨ refl ⟩
137   (assoc eq is′ (map f is′) >>= checkInsert eq i (f i))
138     ≡⟨ cong (λ m → m >>= checkInsert eq i (f i)) (lemma-1 eq f is′) ⟩
139   (just (generate f is′) >>= (checkInsert eq i (f i)))
140     ≡⟨ refl ⟩
141   (checkInsert eq i (f i) (generate f is′))
142     ≡⟨ lemma-checkInsert-generate eq f i is′ ⟩
143   just (generate f (i ∷ is′)) ∎
144
145 lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
146 lemma-2 eq []       []       h p = refl
147 lemma-2 eq []       (x ∷ xs) h ()
148 lemma-2 eq (x ∷ xs) []       h ()
149 lemma-2 eq (i ∷ is) (x ∷ xs) h p = {!!}
150
151 idrange : (n : ℕ) → List (Fin n)
152 idrange n = toList (tabulate id)
153
154 bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B))
155 bff get eq s v = let s′ = idrange (length s)
156                      g  = fromFunc (λ f → lookupVec f (fromList s))
157                      h  = assoc eq (get s′) v
158                      h′ = fmap (flip union g) h
159                  in fmap (flip map s′ ∘ flip lookup) h′
160
161 theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : EqInst τ) → (s : List τ) → bff get eq s (get s) ≡ just s
162 theorem-1 get eq s = {!!}