3 open import Data.Nat using (â„• ; zero ; suc)
4 open import Data.Maybe using (Maybe ; just ; nothing ; maybe′)
5 open import Data.Fin using (Fin ; zero ; suc)
6 open import Data.Fin.Props using (_≟_)
7 open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate) renaming (lookup to lookupVec)
8 open import Data.Vec.Properties using (lookup∘tabulate)
9 open import Data.List using (List ; [] ; _∷_ ; map ; zip)
10 open import Data.Product using (_×_ ; _,_)
11 open import Function using (id ; _∘_ ; flip)
12 open import Relation.Nullary using (¬_ ; yes ; no)
13 open import Relation.Nullary.Negation using (contradiction ; contraposition)
14 open import Relation.Binary.Core using (_≡_ ; refl)
15 open import Relation.Binary.PropositionalEquality using (cong ; sym ; _≗_ ; trans)
16 open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
18 FinMapMaybe : ℕ → Set → Set
19 FinMapMaybe n A = Vec (Maybe A) n
21 lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A
24 insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A
25 insert f a m = m [ f ]≔ (just a)
27 empty : {A : Set} {n : ℕ} → FinMapMaybe n A
28 empty = replicate nothing
30 fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A
31 fromAscList [] = empty
32 fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)
34 FinMap : ℕ → Set → Set
37 lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A
40 fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A
43 union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n A → FinMap n A
44 union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1))
46 restrict : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
47 restrict f is = fromAscList (zip is (map f is))
49 lemma-just≢nothing : {A Whatever : Set} {a : A} → _≡_ {_} {Maybe A} (just a) nothing → Whatever
50 lemma-just≢nothing ()
52 lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → lookupM f m ≡ just a → m ≡ insert f a m
53 lemma-insert-same [] () a p
54 lemma-insert-same (.(just a) ∷ xs) zero a refl = refl
55 lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p)
57 lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing
58 lemma-lookupM-empty zero = refl
59 lemma-lookupM-empty (suc i) = lemma-lookupM-empty i
61 lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → lookupM i (insert i a m) ≡ just a
62 lemma-lookupM-insert zero _ (_ ∷ _) = refl
63 lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs
65 lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m)
66 lemma-lookupM-insert-other zero zero a m p = contradiction refl p
67 lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl
68 lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl
69 lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p)
71 lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y
72 lemma-from-just refl = refl
74 lemma-lookupM-restrict : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → lookupM i (restrict f is) ≡ just a → f i ≡ a
75 lemma-lookupM-restrict {A} i f [] a p = lemma-just≢nothing (trans (sym p) (lemma-lookupM-empty i))
76 lemma-lookupM-restrict i f (i' ∷ is) a p with i ≟ i'
77 lemma-lookupM-restrict i f (.i ∷ is) a p | yes refl = lemma-from-just (begin
79 ≡⟨ sym (lemma-lookupM-insert i (f i) (restrict f is)) ⟩
80 lookupM i (insert i (f i) (restrict f is))
82 lookupM i (restrict f (i ∷ is))
85 lemma-lookupM-restrict i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-restrict i f is a (begin
86 lookupM i (restrict f is)
87 ≡⟨ lemma-lookupM-insert-other i i' (f i') (restrict f is) ¬p2 ⟩
88 lookupM i (insert i' (f i') (restrict f is))
90 lookupM i (restrict f (i' ∷ is))
94 lemma-tabulate-∘ : {n : ℕ} {A : Set} → {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g
95 lemma-tabulate-∘ {zero} {_} {f} {g} f≗g = refl
96 lemma-tabulate-∘ {suc n} {_} {f} {g} f≗g = begin
97 f zero ∷ tabulate (f ∘ suc)
98 ≡⟨ cong (flip Vec._∷_ (tabulate (f ∘ suc))) (f≗g zero) ⟩
99 g zero ∷ tabulate (f ∘ suc)
100 ≡⟨ cong (Vec._∷_ (g zero)) (lemma-tabulate-∘ (f≗g ∘ suc)) ⟩
101 g zero ∷ tabulate (g ∘ suc) ∎
103 lemma-union-restrict : {n : ℕ} {A : Set} → (f : Fin n → A) → (is : List (Fin n)) → union (restrict f is) (fromFunc f) ≡ fromFunc f
104 lemma-union-restrict f is = begin
105 union (restrict f is) (fromFunc f)
107 tabulate (λ j → maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is)))
108 ≡⟨ lemma-tabulate-∘ (lemma-inner f is) ⟩
110 where lemma-inner : {n : ℕ} {A : Set} (f : Fin n → A) → (is : List (Fin n)) → (j : Fin n) → maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is)) ≡ f j
111 lemma-inner f [] j = begin
112 maybe′ id (lookup j (fromFunc f)) (lookupM j empty)
113 ≡⟨ cong (maybe′ id (lookup j (fromFunc f))) (lemma-lookupM-empty j) ⟩
114 maybe′ id (lookup j (fromFunc f)) nothing
116 lookup j (fromFunc f)
117 ≡⟨ lookup∘tabulate f j ⟩
119 lemma-inner f (i ∷ is) j with j ≟ i
120 lemma-inner f (.j ∷ is) j | yes refl = cong (maybe′ id (lookup j (fromFunc f))) (lemma-lookupM-insert j (f j) (restrict f is))
121 lemma-inner f (i ∷ is) j | no j≢i = begin
122 maybe′ id (lookup j (fromFunc f)) (lookupM j (insert i (f i) (restrict f is)))
123 ≡⟨ cong (maybe′ id (lookup j (fromFunc f))) (sym (lemma-lookupM-insert-other j i (f i) (restrict f is) j≢i)) ⟩
124 maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is))
125 ≡⟨ lemma-inner f is j ⟩