3 import Category.Functor
5 open import Data.List using (List ; length ; replicate) renaming ([] to []L ; _∷_ to _∷L_)
6 open import Data.Maybe using (Maybe ; just ; nothing) renaming (setoid to MaybeEq)
7 open import Data.Nat using (â„• ; zero ; suc)
8 open import Data.Product using (_×_ ; _,_)
9 open import Data.Vec using (Vec ; toList ; fromList ; map) renaming ([] to []V ; _∷_ to _∷V_)
10 open import Data.Vec.Equality using () renaming (module Equality to VecEq)
11 open import Function using (_∘_)
12 open import Level using () renaming (zero to â„“â‚€)
13 open import Relation.Binary using (Setoid ; module Setoid)
14 open import Relation.Binary.Core using (_≡_ ; refl)
15 open import Relation.Binary.PropositionalEquality using (_≗_ ; cong ; subst ; trans) renaming (setoid to PropEq)
17 open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)
18 open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
20 ∷-injective : {A : Set} {n : ℕ} {x y : A} {xs ys : Vec A n} →
21 (x ∷V xs) ≡ (y ∷V ys) → x ≡ y × xs ≡ ys
22 ∷-injective refl = refl , refl
24 just-injective : {A : Set} → {x y : A} → Maybe.just x ≡ Maybe.just y → x ≡ y
25 just-injective refl = refl
27 length-replicate : {A : Set} {a : A} → (n : ℕ) → length (replicate n a) ≡ n
28 length-replicate zero = refl
29 length-replicate (suc n) = cong suc (length-replicate n)
31 map-just-injective : {A : Set} {n : ℕ} {xs ys : Vec A n} →
32 map Maybe.just xs ≡ map Maybe.just ys → xs ≡ ys
33 map-just-injective {xs = []V} {ys = []V} p = refl
34 map-just-injective {xs = x ∷V xs′} {ys = y ∷V ys′} p with ∷-injective p
35 map-just-injective {xs = x ∷V xs′} {ys = .x ∷V ys′} p | refl , p′ = cong (_∷V_ x) (map-just-injective p′)
37 mapMV : {A B : Set} {n : ℕ} → (A → Maybe B) → Vec A n → Maybe (Vec B n)
38 mapMV f []V = just []V
39 mapMV f (x ∷V xs) = (f x) >>= (λ y → (_∷V_ y) <$> (mapMV f xs))
41 mapMV-cong : {A B : Set} {f g : A → Maybe B} → f ≗ g → {n : ℕ} → mapMV {n = n} f ≗ mapMV g
42 mapMV-cong f≗g []V = refl
43 mapMV-cong {f = f} {g = g} f≗g (x ∷V xs) with f x | g x | f≗g x
44 mapMV-cong f≗g (x ∷V xs) | just y | .(just y) | refl = cong (_<$>_ (_∷V_ y)) (mapMV-cong f≗g xs)
45 mapMV-cong f≗g (x ∷V xs) | nothing | .nothing | refl = refl
47 mapMV-purity : {A B : Set} {n : ℕ} → (f : A → B) → (v : Vec A n) → mapMV (just ∘ f) v ≡ just (map f v)
48 mapMV-purity f []V = refl
49 mapMV-purity f (x ∷V xs) rewrite mapMV-purity f xs = refl
51 maybeEq-from-≡ : {A : Set} {a b : Maybe A} → Setoid._≈_ (PropEq (Maybe A)) a b → Setoid._≈_ (MaybeEq (PropEq A)) a b
52 maybeEq-from-≡ {a = just x} {b = .(just x)} refl = just refl
53 maybeEq-from-≡ {a = nothing} {b = .nothing} refl = nothing
55 maybeEq-to-≡ : {A : Set} {a b : Maybe A} → Setoid._≈_ (MaybeEq (PropEq A)) a b → Setoid._≈_ (PropEq (Maybe A)) a b
56 maybeEq-to-≡ (just refl) = refl
57 maybeEq-to-≡ nothing = refl
59 subst-cong : {A : Set} → (T : A → Set) → {g : A → A} → {a b : A} → (f : {c : A} → T c → T (g c)) → (p : a ≡ b) →
60 f ∘ subst T p ≗ subst T (cong g p) ∘ f
61 subst-cong T f refl _ = refl
63 subst-fromList : {A : Set} {x y : List A} → (p : y ≡ x) →
64 subst (Vec A) (cong length p) (fromList y) ≡ fromList x
65 subst-fromList refl = refl
67 subst-subst : {A : Set} (T : A → Set) {a b c : A} → (p : a ≡ b) → (p′ : b ≡ c) → (x : T a) →
68 subst T p′ (subst T p x) ≡ subst T (trans p p′) x
69 subst-subst T refl p′ x = refl
71 toList-fromList : {A : Set} → (l : List A) → toList (fromList l) ≡ l
72 toList-fromList []L = refl
73 toList-fromList (x ∷L xs) = cong (_∷L_ x) (toList-fromList xs)
75 toList-subst : {A : Set} → {n m : ℕ} (v : Vec A n) → (p : n ≡ m) →
76 toList (subst (Vec A) p v) ≡ toList v
77 toList-subst v refl = refl
79 vecIsSetoid : Setoid ℓ₀ ℓ₀ → ℕ → Setoid ℓ₀ ℓ₀
80 vecIsSetoid S n = record
81 { Carrier = Vec S.Carrier n
82 ; _≈_ = λ x y → VecEq._≈_ S {n} x {n} y
83 ; isEquivalence = record
84 { refl = VecEq.refl S _
86 ; trans = VecEq.trans S }