cleanup unused function and import
[~helmut/bidiragda.git] / Precond.agda
1 open import Relation.Binary.Core using (Decidable ; _≡_)
2
3 module Precond (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where
4
5 open import Data.Nat using (ℕ)
6 open import Data.Fin using (Fin ; zero ; suc)
7 open import Data.Fin.Props using (_≟_)
8 open import Data.List using (List ; [] ; _∷_)
9 import Level
10 import Category.Monad
11 import Category.Functor
12 open import Data.Maybe using (Maybe ; nothing ; just ; maybe′)
13 open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
14 open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)
15 open import Data.Vec using (Vec ; [] ; _∷_ ; map ; lookup ; toList ; tabulate)
16 open import Data.Vec.Properties using (map-cong ; map-∘ ; tabulate-∘)
17 import Data.List.All
18 open import Data.List.Any using (here ; there)
19 open Data.List.Any.Membership-≡ using (_∉_)
20 open import Data.Maybe using (just)
21 open import Data.Product using (∃ ; _,_ ; proj₂)
22 open import Function using (flip ; _∘_ ; id)
23 open import Relation.Binary.PropositionalEquality using (refl ; cong ; inspect ; [_] ; sym ; decSetoid)
24 open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
25 open import Relation.Nullary using (yes ; no)
26
27 open import Generic using (mapMV ; sequenceV ; sequence-map)
28 open import FinMap using (FinMapMaybe ; lookupM ; union ; fromFunc ; empty ; insert ; lemma-lookupM-empty ; delete-many ; lemma-tabulate-∘ ; delete ; lemma-lookupM-delete)
29 import CheckInsert
30 open CheckInsert (decSetoid deq) using (checkInsert ; lemma-checkInsert-new ; lemma-lookupM-checkInsert-other)
31 import BFF
32 open import Bidir (decSetoid deq) using (_in-domain-of_ ; lemma-assoc-domain ; lemma-just-sequence)
33
34 open BFF.VecBFF (decSetoid deq) using (get-type ; assoc ; enumerate ; denumerate ; bff)
35
36 lemma-lookup-map-just : {n : ℕ} (f : Fin n) {A : Set} (v : Vec A n) → lookup f (map Maybe.just v) ≡ Maybe.just (lookup f v)
37 lemma-lookup-map-just zero    (x ∷ xs) = refl
38 lemma-lookup-map-just (suc f) (x ∷ xs) = lemma-lookup-map-just f xs
39
40 lemma-maybe-just : {A : Set} → (a : A) → (ma : Maybe A) → maybe′ Maybe.just (just a) ma ≡ Maybe.just (maybe′ id a ma)
41 lemma-maybe-just a (just x) = refl
42 lemma-maybe-just a nothing = refl
43
44 lemma-union-delete-fromFunc : {m n : ℕ} {A : Set} {is : Vec (Fin n) m} {h : FinMapMaybe n A} {g : Vec A n} → (toList is) in-domain-of h → ∃ λ v → union h (delete-many is (map just g)) ≡ map just v
45 lemma-union-delete-fromFunc {is = []} {h = h} {g = g} p = _ , (begin
46   union h (map just g)
47     ≡⟨ lemma-tabulate-∘ (λ f → begin
48       maybe′ just (lookup f (map just g)) (lookup f h)
49         ≡⟨ cong (flip (maybe′ just) (lookup f h)) (lemma-lookup-map-just f g) ⟩
50       maybe′ just (just (lookup f g)) (lookup f h)
51         ≡⟨ lemma-maybe-just (lookup f g) (lookup f h) ⟩
52       just (maybe′ id (lookup f g) (lookup f h)) ∎) ⟩
53   tabulate (λ f → just (maybe′ id (lookup f g) (lookup f h)))
54     ≡⟨ tabulate-∘ just (λ f → maybe′ id (lookup f g) (lookup f h)) ⟩
55   map just (tabulate (λ f → maybe′ id (lookup f g) (lookup f h))) ∎)
56 lemma-union-delete-fromFunc {n = n} {is = i ∷ is} {h = h} {g = g} ((x , px) Data.List.All.∷ ps) = _ , (begin
57   union h (delete i (delete-many is (map just g)))
58     ≡⟨ lemma-tabulate-∘ inner ⟩
59   union h (delete-many is (map just g))
60     ≡⟨ proj₂ (lemma-union-delete-fromFunc ps) ⟩
61   map just _ ∎)
62   where inner : (f : Fin n) → maybe′ just (lookupM f (delete i (delete-many is (map just g)))) (lookup f h) ≡ maybe′ just (lookupM f (delete-many is (map just g))) (lookup f h)
63         inner f with f ≟ i
64         inner .i | yes refl = begin
65           maybe′ just (lookupM i (delete i (delete-many is (map just g)))) (lookup i h)
66             ≡⟨ cong (maybe′ just _) px ⟩
67           just x
68             ≡⟨ cong (maybe′ just _) (sym px) ⟩
69           maybe′ just (lookupM i (delete-many is (map just g))) (lookup i h) ∎
70         inner f | no f≢i = cong (flip (maybe′ just) (lookup f h)) (lemma-lookupM-delete (delete-many is (map just g)) f≢i)
71
72 assoc-enough : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → (v : Vec Carrier (getlen m)) → ∃ (λ h → assoc (get (enumerate s)) v ≡ just h) → ∃ λ u → bff get s v ≡ just u
73 assoc-enough get s v (h , p) = let w , pw = lemma-union-delete-fromFunc (lemma-assoc-domain (get s′) v h p) in _ , (begin
74   bff get s v
75     ≡⟨ cong (flip _>>=_ (flip mapMV s′ ∘ flip lookupM) ∘ _<$>_ (flip union g′)) p ⟩
76   mapMV (flip lookupM (union h g′)) s′
77     ≡⟨ sym (sequence-map (flip lookupM (union h g′)) s′) ⟩
78   sequenceV (map (flip lookupM (union h g′)) s′)
79     ≡⟨ cong (sequenceV ∘ flip map s′ ∘ flip lookupM) pw ⟩
80   sequenceV (map (flip lookupM (map just w)) s′)
81     ≡⟨ cong sequenceV (map-cong (λ f → lemma-lookup-map-just f w) s′) ⟩
82   sequenceV (map (Maybe.just ∘ flip lookup w) s′)
83     ≡⟨ cong sequenceV (map-∘ just (flip lookup w) s′) ⟩
84   sequenceV (map Maybe.just (map (flip lookup w) s′))
85     ≡⟨ lemma-just-sequence (map (flip lookup w) s′) ⟩
86   just (map (flip lookup w) s′) ∎)
87   where s′ = enumerate s
88         g  = fromFunc (denumerate s)
89         g′ = delete-many (get s′) g
90
91 data All-different {A : Set} : List A → Set where
92   different-[] : All-different []
93   different-∷  : {x : A} {xs : List A} → x ∉ xs → All-different xs → All-different (x ∷ xs)
94
95 lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing
96 lemma-∉-lookupM-assoc i []         []         .empty refl i∉is = lemma-lookupM-empty i
97 lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc is' xs' | inspect (assoc is') xs'
98 lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ]
99 lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = begin
100   lookupM i h
101     ≡⟨ sym (lemma-lookupM-checkInsert-other i i' (i∉is ∘ here) x' h' h ph) ⟩
102   lookupM i h'
103     ≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩
104   nothing ∎
105
106 different-assoc : {m n : ℕ} → (u : Vec (Fin n) m) → (v : Vec Carrier m) → All-different (toList u) → ∃ λ h → assoc u v ≡ just h
107 different-assoc []       []       p = empty , refl
108 different-assoc (u ∷ us) (v ∷ vs) (different-∷ u∉us diff-us) with different-assoc us vs diff-us
109 different-assoc (u ∷ us) (v ∷ vs) (different-∷ u∉us diff-us) | h , p' = insert u v h , (begin
110   assoc (u ∷ us) (v ∷ vs)
111     ≡⟨ refl ⟩
112   (assoc us vs >>= checkInsert u v)
113     ≡⟨ cong (flip _>>=_ (checkInsert u v)) p' ⟩
114   checkInsert u v h
115     ≡⟨ lemma-checkInsert-new u v h (lemma-∉-lookupM-assoc u us vs h p' u∉us) ⟩
116   just (insert u v h) ∎)