assoc _ []V []V = just empty
assoc eq (i ∷V is) (b ∷V bs) = (assoc eq is bs) >>= (checkInsert eq i b)
+ enumerate : {A : Set} {n : ℕ} → Vec A n → Vec (Fin n) n
+ enumerate _ = tabulate id
+
denumerate : {A : Set} {n : ℕ} → Vec A n → Fin n → A
denumerate = flip lookupV
- bff : (getlen : ℕ → ℕ) → ({A : Set} {n : ℕ} → Vec A (getlen n) → Vec A n) → ({m : ℕ} {B : Set} → EqInst B → Vec B (getlen m) → Vec B m → Maybe (Vec B (getlen m)))
- bff getlen get {m} eq s v = let s′ = allFin (getlen m)
- g = fromFunc (denumerate s)
- h = assoc eq (get s′) v
- h′ = fmap (flip union g) h
- in fmap (flip mapV s′ ∘ (flip lookup)) h′
+ bff : {getlen : ℕ → ℕ} → ({A : Set} {n : ℕ} → Vec A (getlen n) → Vec A n) → ({m : ℕ} {B : Set} → EqInst B → Vec B (getlen m) → Vec B m → Maybe (Vec B (getlen m)))
+ bff get eq s v = let s′ = enumerate s
+ g = fromFunc (denumerate s)
+ h = assoc eq (get s′) v
+ h′ = fmap (flip union g) h
+ in fmap (flip mapV s′ ∘ (flip lookup)) h′