This way matches the usage in lemma-1 more closely since zip actually is
something similar to assoc.
empty : {A : Set} {n : ℕ} → FinMapMaybe n A
empty = replicate nothing
+ fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A
+ fromAscList [] = empty
+ fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)
+
FinMap : ℕ → Set → Set
FinMap n A = Vec A n
assoc _ _ _ = nothing
generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A
-generate f [] = empty
-generate f (n ∷ ns) = insert n (f n) (generate f ns)
+generate f is = fromAscList (zip is (map f is))
lemma-1 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f [] = refl