From df9a08b332fff377d06d973535017d891f5a3416 Mon Sep 17 00:00:00 2001 From: Helmut Grohne Date: Thu, 9 Feb 2012 15:56:29 +0100 Subject: [PATCH] rephrase free-theorem-list-list using pointwise equality --- Bidir.agda | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Bidir.agda b/Bidir.agda index 23381d0..57b77db 100644 --- a/Bidir.agda +++ b/Bidir.agda @@ -11,7 +11,7 @@ open import Function using (id ; _∘_ ; flip) open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary.Core using (_≡_ ; refl) -open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; Reveal_is_) +open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; Reveal_is_ ; _≗_) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap @@ -109,7 +109,7 @@ bff get eq s v = let s′ = enumerate s in fmap (flip map s′ ∘ flip lookup) h′ postulate - free-theorem-list-list : {β γ : Set} → (get : {α : Set} → List α → List α) → (f : β → γ) → (l : List β) → get (map f l) ≡ map f (get l) + free-theorem-list-list : {β γ : Set} → (get : {α : Set} → List α → List α) → (f : β → γ) → get ∘ map f ≗ map f ∘ get toList-map-commutes : {A B : Set} {n : ℕ} → (f : A → B) → (v : Data.Vec.Vec A n) → (toList (Data.Vec.map f v)) ≡ map f (toList v) toList-map-commutes f Data.Vec.[] = refl -- 2.20.1