Age | Commit message (Collapse) | Author |
|
Currently, the implementations of the split and splice operation are both
hidden behind the Bazel API implementation. This was sufficient to implement
splitting at the server and splicing at the client. In order to support the
other direction of splitting at the client and splicing at the server while
reusing their implementations, the code needs to be refactored. First, the
functionality of split and splice are explicitly exposed at the general
execution API interface and implemented in the sub APIs. Second, the
implementations of split and splice are factored into a separate utils class.
|
|
With the introduction of 'just serve', export targets can now be
built also independently from one another based on their
corresponding minimal repository configuration, as stored in the
target cache key.
In this context, this commit changes the RepositoryConfig usage
from one global (static) instance to pointers passed as necessary
throughout the code.
|
|
... which are only actions that, besides giving exit code 0 also
created all the outputs they promised to.
|
|
|
|
... with two minor code base changes compared to previous
use of gsl-lite:
- dag.hpp: ActionNode::Ptr and ArtifactNode::Ptr are not
wrapped in gsl::not_null<> anymore, due to lack of support
for wrapping std::unique_ptr<>. More specifically, the
move constructor is missing, rendering it impossible to
use std::vector<>::emplace_back().
- utils/cpp/gsl.hpp: New header file added to implement the
macros ExpectsAudit() and EnsureAudit(), asserts running
only in debug builds, which were available in gsl-lite but
are missing in MS GSL.
|
|
|
|
- deduplicate dependencies
- remove unused dependency
|
|
|
|
The improved GC implementation uses refactored storage
classes instead of directly accessing "unknown" file paths.
The required storage class refactoring is quite substantial
and outlined in the following paragraphs.
The module `buildtool/file_system` was extended by:
- `ObjectCAS`: a plain CAS implementation for
reading/writing blobs and computing digests for a given
`ObjectType`. Depending on that type, files written to the
file system may have different properties (e.g., the x-bit
set) or the digest may be computed differently (e.g., tree
digests in non-compatible mode).
A new module `buildtool/storage` was introduced containing:
- `LocalCAS`: provides a common interface for the "logical
CAS", which internally combines three `ObjectCAS`s, one
for each `ObjectType` (file, executable, tree).
- `LocalAC`: implements the action cache, which needs the
`LocalCAS` for storing cache values.
- `TargetCache`: implements the high-level target cache,
which also needs the `LocalCAS` for storing cache values.
- `LocalStorage`: combines the storage classes `LocalCAS`,
`LocalAC`, and `TargetCache`. Those are initialized with
settings from `StorageConfig`, such as the build root base
path or number of generations for the garbage collector.
`LocalStorage` is templated with a Boolean parameter
`kDoGlobalUplink`, which indicates that, on every
read/write access, the garbage collector should be used
for uplinking across all generations (global).
- `GarbageCollector`: responsible for garbage collection and
the global uplinking across all generations. To do so, it
employs instances of `LocalStorage` with `kDoGlobalUplink`
set to false, in order to avoid endless recursion. The
actual (local) uplinking within two single generations is
performed by the corresponding storage class (e.g.,
`TargetCache` implements uplinking of target cache entries
between two target cache generations etc.). Thereby, the
actual knowledge how data should be uplinked is
implemented by the instance that is responsible for
creating the data in the first place.
|
|
|
|
This code movement is required to break a cyclic dependency coming with the
introduction of the garbage collector. target_cache depends on
garbage_collector and garbage_collector would depend on target_cache to
determine the target-level-cache directory. After moving this calculation to a
more general location, the cycle is broken.
|
|
|
|
|
|
|
|
While there, also add all direct dependencies explicitly; using
directly dependencies that are pulled in only indireclty causes
problems from a maintainability point of view.
|
|
- LocalStorage Add tree CAS and support reading Git trees
- LocalAction: Create Git tree for output directory
- LocalApi: Support availability and upload of Git trees
- LocalStorage: Support dumping tree to stream in native mode
|
|
|
|
|
|
|
|
This is the initial version of our tool that is able to
build itself. In can be bootstrapped by
./bin/bootstrap.py
Co-authored-by: Oliver Reiche <oliver.reiche@huawei.com>
Co-authored-by: Victor Moreno <victor.moreno1@huawei.com>
|