blob: 8c976a2fc9dc7ce2562c18a74bb52fb45d9bb999 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
#include "src/buildtool/multithreading/task_system.hpp"
#include "gsl-lite/gsl-lite.hpp"
#include "src/buildtool/multithreading/task.hpp"
TaskSystem::TaskSystem() : TaskSystem(std::thread::hardware_concurrency()) {}
TaskSystem::TaskSystem(std::size_t number_of_threads)
: thread_count_{std::max(1UL, number_of_threads)},
num_threads_running_{thread_count_} {
for (std::size_t index = 0; index < thread_count_; ++index) {
queues_.emplace_back(&queues_read_, &num_threads_running_);
}
for (std::size_t index = 0; index < thread_count_; ++index) {
threads_.emplace_back([&, index]() { Run(index); });
}
}
TaskSystem::~TaskSystem() {
// When starting a new task system all spawned threads will immediately go
// to sleep and wait for tasks. Even after adding some tasks, it can take a
// while until the first thread wakes up. Therefore, we first need to wait
// for the queues being read, before we can wait for all threads to become
// idle.
queues_read_.WaitForSet();
num_threads_running_.WaitForZero();
for (auto& q : queues_) {
q.done();
}
for (auto& t : threads_) {
t.join();
}
}
void TaskSystem::Run(std::size_t idx) {
gsl_Expects(thread_count_ > 0);
while (true) {
std::optional<Task> t{};
for (std::size_t i = 0; i < thread_count_; ++i) {
t = queues_[(idx + i) % thread_count_].try_pop();
if (t) {
break;
}
}
// NOLINTNEXTLINE(clang-analyzer-core.DivideZero)
t = t ? t : queues_[idx % thread_count_].pop();
if (!t) {
break;
}
(*t)();
}
}
|