summaryrefslogtreecommitdiff
path: root/nrlmsise-00.c
diff options
context:
space:
mode:
Diffstat (limited to 'nrlmsise-00.c')
-rw-r--r--nrlmsise-00.c1448
1 files changed, 1448 insertions, 0 deletions
diff --git a/nrlmsise-00.c b/nrlmsise-00.c
new file mode 100644
index 0000000..73a8062
--- /dev/null
+++ b/nrlmsise-00.c
@@ -0,0 +1,1448 @@
+/* -------------------------------------------------------------------- */
+/* --------- N R L M S I S E - 0 0 M O D E L 2 0 0 1 ---------- */
+/* -------------------------------------------------------------------- */
+
+/* This file is part of the NRLMSISE-00 C source code package - release
+ * 20020305
+ *
+ * The NRLMSISE-00 model was developed by Mike Picone, Alan Hedin, and
+ * Doug Drob. They also wrote a NRLMSISE-00 distribution package in
+ * FORTRAN which is available at
+ * http://uap-www.nrl.navy.mil/models_web/msis/msis_home.htm
+ *
+ * Dominik Brodowski implemented and maintains this C version. You can
+ * reach him at devel@brodo.de. See the file "DOCUMENTATION" for details,
+ * and check http://www.brodo.de/english/pub/nrlmsise/index.html for
+ * updated releases of this package.
+ */
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------ INCLUDES --------------------------- */
+/* ------------------------------------------------------------------- */
+
+#include "nrlmsise-00.h" /* header for nrlmsise-00.h */
+#include <math.h> /* maths functions */
+#include <stdio.h> /* for error messages. TBD: remove this */
+#include <stdlib.h> /* for malloc/free */
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------- SHARED VARIABLES ------------------------ */
+/* ------------------------------------------------------------------- */
+
+/* PARMB */
+static double gsurf;
+static double re;
+
+/* GTS3C */
+static double dd;
+
+/* DMIX */
+static double dm04, dm16, dm28, dm32, dm40, dm01, dm14;
+
+/* MESO7 */
+static double meso_tn1[5];
+static double meso_tn2[4];
+static double meso_tn3[3];
+static double meso_tgn1[2];
+static double meso_tgn2[2];
+static double meso_tgn3[2];
+
+/* POWER7 */
+extern double pt[150];
+extern double pd[9][150];
+extern double ps[150];
+extern double pdl[2][25];
+extern double ptl[4][100];
+extern double pma[10][100];
+extern double sam[100];
+
+/* LOWER7 */
+extern double ptm[10];
+extern double pdm[8][10];
+extern double pavgm[10];
+
+/* LPOLY */
+static double dfa;
+static double plg[4][9];
+static double ctloc, stloc;
+static double c2tloc, s2tloc;
+static double s3tloc, c3tloc;
+static double apdf, apt[4];
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------ TSELEC ----------------------------- */
+/* ------------------------------------------------------------------- */
+
+void tselec(struct nrlmsise_flags *flags) {
+ int i;
+ for (i=0;i<24;i++) {
+ if (i!=9) {
+ if (flags->switches[i]==1)
+ flags->sw[i]=1;
+ else
+ flags->sw[i]=0;
+ if (flags->switches[i]>0)
+ flags->swc[i]=1;
+ else
+ flags->swc[i]=0;
+ } else {
+ flags->sw[i]=flags->switches[i];
+ flags->swc[i]=flags->switches[i];
+ }
+ }
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------ GLATF ------------------------------ */
+/* ------------------------------------------------------------------- */
+
+void glatf(double lat, double *gv, double *reff) {
+ double dgtr = 1.74533E-2;
+ double c2;
+ c2 = cos(2.0*dgtr*lat);
+ *gv = 980.616 * (1.0 - 0.0026373 * c2);
+ *reff = 2.0 * (*gv) / (3.085462E-6 + 2.27E-9 * c2) * 1.0E-5;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------ CCOR ------------------------------- */
+/* ------------------------------------------------------------------- */
+
+double ccor(double alt, double r, double h1, double zh) {
+/* CHEMISTRY/DISSOCIATION CORRECTION FOR MSIS MODELS
+ * ALT - altitude
+ * R - target ratio
+ * H1 - transition scale length
+ * ZH - altitude of 1/2 R
+ */
+ double e;
+ double ex;
+ e = (alt - zh) / h1;
+ if (e>70)
+ return exp(0);
+ if (e<-70)
+ return exp(r);
+ ex = exp(e);
+ e = r / (1.0 + ex);
+ return exp(e);
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- SCALH ----------------------------- */
+/* ------------------------------------------------------------------- */
+
+double scalh(double alt, double xm, double temp) {
+ double g;
+ double rgas=831.4;
+ g = gsurf / (pow((1.0 + alt/re),2.0));
+ g = rgas * temp / (g * xm);
+ return g;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* -------------------------------- DNET ----------------------------- */
+/* ------------------------------------------------------------------- */
+
+double dnet (double dd, double dm, double zhm, double xmm, double xm) {
+/* TURBOPAUSE CORRECTION FOR MSIS MODELS
+ * Root mean density
+ * DD - diffusive density
+ * DM - full mixed density
+ * ZHM - transition scale length
+ * XMM - full mixed molecular weight
+ * XM - species molecular weight
+ * DNET - combined density
+ */
+ double a;
+ double ylog;
+ a = zhm / (xmm-xm);
+ if (!((dm>0) && (dd>0))) {
+ printf("dnet log error %e %e %e\n",dm,dd,xm);
+ if ((dd==0) && (dm==0))
+ dd=1;
+ if (dm==0)
+ return dd;
+ if (dd==0)
+ return dm;
+ }
+ ylog = a * log(dm/dd);
+ if (ylog<-10)
+ return dd;
+ if (ylog>10)
+ return dm;
+ a = dd*pow((1.0 + exp(ylog)),(1.0/a));
+ return a;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- SPLINI ---------------------------- */
+/* ------------------------------------------------------------------- */
+
+void splini (double *xa, double *ya, double *y2a, int n, double x, double *y) {
+/* INTEGRATE CUBIC SPLINE FUNCTION FROM XA(1) TO X
+ * XA,YA: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
+ * Y2A: ARRAY OF SECOND DERIVATIVES
+ * N: SIZE OF ARRAYS XA,YA,Y2A
+ * X: ABSCISSA ENDPOINT FOR INTEGRATION
+ * Y: OUTPUT VALUE
+ */
+ double yi=0;
+ int klo=0;
+ int khi=1;
+ double xx, h, a, b, a2, b2;
+ while ((x>xa[klo]) && (khi<n)) {
+ xx=x;
+ if (khi<(n-1)) {
+ if (x<xa[khi])
+ xx=x;
+ else
+ xx=xa[khi];
+ }
+ h = xa[khi] - xa[klo];
+ a = (xa[khi] - xx)/h;
+ b = (xx - xa[klo])/h;
+ a2 = a*a;
+ b2 = b*b;
+ yi += ((1.0 - a2) * ya[klo] / 2.0 + b2 * ya[khi] / 2.0 + ((-(1.0+a2*a2)/4.0 + a2/2.0) * y2a[klo] + (b2*b2/4.0 - b2/2.0) * y2a[khi]) * h * h / 6.0) * h;
+ klo++;
+ khi++;
+ }
+ *y = yi;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- SPLINT ---------------------------- */
+/* ------------------------------------------------------------------- */
+
+void splint (double *xa, double *ya, double *y2a, int n, double x, double *y) {
+/* CALCULATE CUBIC SPLINE INTERP VALUE
+ * ADAPTED FROM NUMERICAL RECIPES BY PRESS ET AL.
+ * XA,YA: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
+ * Y2A: ARRAY OF SECOND DERIVATIVES
+ * N: SIZE OF ARRAYS XA,YA,Y2A
+ * X: ABSCISSA FOR INTERPOLATION
+ * Y: OUTPUT VALUE
+ */
+ int klo=0;
+ int khi=n-1;
+ int k;
+ double h;
+ double a, b, yi;
+ while ((khi-klo)>1) {
+ k=(khi+klo)/2;
+ if (xa[k]>x)
+ khi=k;
+ else
+ klo=k;
+ }
+ h = xa[khi] - xa[klo];
+ if (h==0.0)
+ printf("bad XA input to splint");
+ a = (xa[khi] - x)/h;
+ b = (x - xa[klo])/h;
+ yi = a * ya[klo] + b * ya[khi] + ((a*a*a - a) * y2a[klo] + (b*b*b - b) * y2a[khi]) * h * h/6.0;
+ *y = yi;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- SPLINE ---------------------------- */
+/* ------------------------------------------------------------------- */
+
+void spline (double *x, double *y, int n, double yp1, double ypn, double *y2) {
+/* CALCULATE 2ND DERIVATIVES OF CUBIC SPLINE INTERP FUNCTION
+ * ADAPTED FROM NUMERICAL RECIPES BY PRESS ET AL
+ * X,Y: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
+ * N: SIZE OF ARRAYS X,Y
+ * YP1,YPN: SPECIFIED DERIVATIVES AT X[0] AND X[N-1]; VALUES
+ * >= 1E30 SIGNAL SIGNAL SECOND DERIVATIVE ZERO
+ * Y2: OUTPUT ARRAY OF SECOND DERIVATIVES
+ */
+ double *u;
+ double sig, p, qn, un;
+ int i, k;
+ u=malloc(sizeof(double)*n);
+ if (u==NULL) {
+ printf("Out Of Memory in spline - ERROR");
+ return;
+ }
+ if (yp1>0.99E30) {
+ y2[0]=0;
+ u[0]=0;
+ } else {
+ y2[0]=-0.5;
+ u[0]=(3.0/(x[1]-x[0]))*((y[1]-y[0])/(x[1]-x[0])-yp1);
+ }
+ for (i=1;i<(n-1);i++) {
+ sig = (x[i]-x[i-1])/(x[i+1] - x[i-1]);
+ p = sig * y2[i-1] + 2.0;
+ y2[i] = (sig - 1.0) / p;
+ u[i] = (6.0 * ((y[i+1] - y[i])/(x[i+1] - x[i]) -(y[i] - y[i-1]) / (x[i] - x[i-1]))/(x[i+1] - x[i-1]) - sig * u[i-1])/p;
+ }
+ if (ypn>0.99E30) {
+ qn = 0;
+ un = 0;
+ } else {
+ qn = 0.5;
+ un = (3.0 / (x[n-1] - x[n-2])) * (ypn - (y[n-1] - y[n-2])/(x[n-1] - x[n-2]));
+ }
+ y2[n-1] = (un - qn * u[n-2]) / (qn * y2[n-2] + 1.0);
+ for (k=n-2;k>=0;k--)
+ y2[k] = y2[k] * y2[k+1] + u[k];
+
+ free(u);
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- DENSM ----------------------------- */
+/* ------------------------------------------------------------------- */
+
+__inline_double zeta(double zz, double zl) {
+ return ((zz-zl)*(re+zl)/(re+zz));
+}
+
+double densm (double alt, double d0, double xm, double *tz, int mn3, double *zn3, double *tn3, double *tgn3, int mn2, double *zn2, double *tn2, double *tgn2) {
+/* Calculate Temperature and Density Profiles for lower atmos. */
+ double xs[10], ys[10], y2out[10];
+ double rgas = 831.4;
+ double z, z1, z2, t1, t2, zg, zgdif;
+ double yd1, yd2;
+ double x, y, yi;
+ double expl, gamm, glb;
+ double densm_tmp;
+ int mn;
+ int k;
+ densm_tmp=d0;
+ if (alt>zn2[0]) {
+ if (xm==0.0)
+ return *tz;
+ else
+ return d0;
+ }
+
+ /* STRATOSPHERE/MESOSPHERE TEMPERATURE */
+ if (alt>zn2[mn2-1])
+ z=alt;
+ else
+ z=zn2[mn2-1];
+ mn=mn2;
+ z1=zn2[0];
+ z2=zn2[mn-1];
+ t1=tn2[0];
+ t2=tn2[mn-1];
+ zg = zeta(z, z1);
+ zgdif = zeta(z2, z1);
+
+ /* set up spline nodes */
+ for (k=0;k<mn;k++) {
+ xs[k]=zeta(zn2[k],z1)/zgdif;
+ ys[k]=1.0 / tn2[k];
+ }
+ yd1=-tgn2[0] / (t1*t1) * zgdif;
+ yd2=-tgn2[1] / (t2*t2) * zgdif * (pow(((re+z2)/(re+z1)),2.0));
+
+ /* calculate spline coefficients */
+ spline (xs, ys, mn, yd1, yd2, y2out);
+ x = zg/zgdif;
+ splint (xs, ys, y2out, mn, x, &y);
+
+ /* temperature at altitude */
+ *tz = 1.0 / y;
+ if (xm!=0.0) {
+ /* calaculate stratosphere / mesospehere density */
+ glb = gsurf / (pow((1.0 + z1/re),2.0));
+ gamm = xm * glb * zgdif / rgas;
+
+ /* Integrate temperature profile */
+ splini(xs, ys, y2out, mn, x, &yi);
+ expl=gamm*yi;
+ if (expl>50.0)
+ expl=50.0;
+
+ /* Density at altitude */
+ densm_tmp = densm_tmp * (t1 / *tz) * exp(-expl);
+ }
+
+ if (alt>zn3[0]) {
+ if (xm==0.0)
+ return *tz;
+ else
+ return densm_tmp;
+ }
+
+ /* troposhere / stratosphere temperature */
+ z = alt;
+ mn = mn3;
+ z1=zn3[0];
+ z2=zn3[mn-1];
+ t1=tn3[0];
+ t2=tn3[mn-1];
+ zg=zeta(z,z1);
+ zgdif=zeta(z2,z1);
+
+ /* set up spline nodes */
+ for (k=0;k<mn;k++) {
+ xs[k] = zeta(zn3[k],z1) / zgdif;
+ ys[k] = 1.0 / tn3[k];
+ }
+ yd1=-tgn3[0] / (t1*t1) * zgdif;
+ yd2=-tgn3[1] / (t2*t2) * zgdif * (pow(((re+z2)/(re+z1)),2.0));
+
+ /* calculate spline coefficients */
+ spline (xs, ys, mn, yd1, yd2, y2out);
+ x = zg/zgdif;
+ splint (xs, ys, y2out, mn, x, &y);
+
+ /* temperature at altitude */
+ *tz = 1.0 / y;
+ if (xm!=0.0) {
+ /* calaculate tropospheric / stratosphere density */
+ glb = gsurf / (pow((1.0 + z1/re),2.0));
+ gamm = xm * glb * zgdif / rgas;
+
+ /* Integrate temperature profile */
+ splini(xs, ys, y2out, mn, x, &yi);
+ expl=gamm*yi;
+ if (expl>50.0)
+ expl=50.0;
+
+ /* Density at altitude */
+ densm_tmp = densm_tmp * (t1 / *tz) * exp(-expl);
+ }
+ if (xm==0.0)
+ return *tz;
+ else
+ return densm_tmp;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- DENSU ----------------------------- */
+/* ------------------------------------------------------------------- */
+
+double densu (double alt, double dlb, double tinf, double tlb, double xm, double alpha, double *tz, double zlb, double s2, int mn1, double *zn1, double *tn1, double *tgn1) {
+/* Calculate Temperature and Density Profiles for MSIS models
+ * New lower thermo polynomial
+ */
+ double yd2, yd1, x, y;
+ double rgas=831.4;
+ double densu_temp=1.0;
+ double za, z, zg2, tt, ta;
+ double dta, z1, z2, t1, t2, zg, zgdif;
+ int mn;
+ int k;
+ double glb;
+ double expl;
+ double yi;
+ double densa;
+ double gamma, gamm;
+ double xs[5], ys[5], y2out[5];
+ /* joining altitudes of Bates and spline */
+ za=zn1[0];
+ if (alt>za)
+ z=alt;
+ else
+ z=za;
+
+ /* geopotential altitude difference from ZLB */
+ zg2 = zeta(z, zlb);
+
+ /* Bates temperature */
+ tt = tinf - (tinf - tlb) * exp(-s2*zg2);
+ ta = tt;
+ *tz = tt;
+ densu_temp = *tz;
+
+ if (alt<za) {
+ /* calculate temperature below ZA
+ * temperature gradient at ZA from Bates profile */
+ dta = (tinf - ta) * s2 * pow(((re+zlb)/(re+za)),2.0);
+ tgn1[0]=dta;
+ tn1[0]=ta;
+ if (alt>zn1[mn1-1])
+ z=alt;
+ else
+ z=zn1[mn1-1];
+ mn=mn1;
+ z1=zn1[0];
+ z2=zn1[mn-1];
+ t1=tn1[0];
+ t2=tn1[mn-1];
+ /* geopotental difference from z1 */
+ zg = zeta (z, z1);
+ zgdif = zeta(z2, z1);
+ /* set up spline nodes */
+ for (k=0;k<mn;k++) {
+ xs[k] = zeta(zn1[k], z1) / zgdif;
+ ys[k] = 1.0 / tn1[k];
+ }
+ /* end node derivatives */
+ yd1 = -tgn1[0] / (t1*t1) * zgdif;
+ yd2 = -tgn1[1] / (t2*t2) * zgdif * pow(((re+z2)/(re+z1)),2.0);
+ /* calculate spline coefficients */
+ spline (xs, ys, mn, yd1, yd2, y2out);
+ x = zg / zgdif;
+ splint (xs, ys, y2out, mn, x, &y);
+ /* temperature at altitude */
+ *tz = 1.0 / y;
+ densu_temp = *tz;
+ }
+ if (xm==0)
+ return densu_temp;
+
+ /* calculate density above za */
+ glb = gsurf / pow((1.0 + zlb/re),2.0);
+ gamma = xm * glb / (s2 * rgas * tinf);
+ expl = exp(-s2 * gamma * zg2);
+ if (expl>50.0)
+ expl=50.0;
+ if (tt<=0)
+ expl=50.0;
+
+ /* density at altitude */
+ densa = dlb * pow((tlb/tt),((1.0+alpha+gamma))) * expl;
+ densu_temp=densa;
+ if (alt>=za)
+ return densu_temp;
+
+ /* calculate density below za */
+ glb = gsurf / pow((1.0 + z1/re),2.0);
+ gamm = xm * glb * zgdif / rgas;
+
+ /* integrate spline temperatures */
+ splini (xs, ys, y2out, mn, x, &yi);
+ expl = gamm * yi;
+ if (expl>50.0)
+ expl=50.0;
+ if (*tz<=0)
+ expl=50.0;
+
+ /* density at altitude */
+ densu_temp = densu_temp * pow ((t1 / *tz),(1.0 + alpha)) * exp(-expl);
+ return densu_temp;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- GLOBE7 ---------------------------- */
+/* ------------------------------------------------------------------- */
+
+/* 3hr Magnetic activity functions */
+/* Eq. A24d */
+__inline_double g0(double a, double *p) {
+ return (a - 4.0 + (p[25] - 1.0) * (a - 4.0 + (exp(-sqrt(p[24]*p[24]) * (a - 4.0)) - 1.0) / sqrt(p[24]*p[24])));
+}
+
+/* Eq. A24c */
+__inline_double sumex(double ex) {
+ return (1.0 + (1.0 - pow(ex,19.0)) / (1.0 - ex) * pow(ex,0.5));
+}
+
+/* Eq. A24a */
+__inline_double sg0(double ex, double *p, double *ap) {
+ return (g0(ap[1],p) + (g0(ap[2],p)*ex + g0(ap[3],p)*ex*ex + \
+ g0(ap[4],p)*pow(ex,3.0) + (g0(ap[5],p)*pow(ex,4.0) + \
+ g0(ap[6],p)*pow(ex,12.0))*(1.0-pow(ex,8.0))/(1.0-ex)))/sumex(ex);
+}
+
+double globe7(double *p, struct nrlmsise_input *input, struct nrlmsise_flags *flags) {
+/* CALCULATE G(L) FUNCTION
+ * Upper Thermosphere Parameters */
+ double t[15];
+ int i,j;
+ int sw9=1;
+ double apd;
+ double xlong;
+ double tloc;
+ double c, s, c2, c4, s2;
+ double sr = 7.2722E-5;
+ double dgtr = 1.74533E-2;
+ double dr = 1.72142E-2;
+ double hr = 0.2618;
+ double cd32, cd18, cd14, cd39;
+ double p32, p18, p14, p39;
+ double df, dfa;
+ double f1, f2;
+ double tinf;
+ struct ap_array *ap;
+
+ tloc=input->lst;
+ for (j=0;j<14;j++)
+ t[j]=0;
+ if (flags->sw[9]>0)
+ sw9=1;
+ else if (flags->sw[9]<0)
+ sw9=-1;
+ xlong = input->g_long;
+
+ /* calculate legendre polynomials */
+ c = sin(input->g_lat * dgtr);
+ s = cos(input->g_lat * dgtr);
+ c2 = c*c;
+ c4 = c2*c2;
+ s2 = s*s;
+
+ plg[0][1] = c;
+ plg[0][2] = 0.5*(3.0*c2 -1.0);
+ plg[0][3] = 0.5*(5.0*c*c2-3.0*c);
+ plg[0][4] = (35.0*c4 - 30.0*c2 + 3.0)/8.0;
+ plg[0][5] = (63.0*c2*c2*c - 70.0*c2*c + 15.0*c)/8.0;
+ plg[0][6] = (11.0*c*plg[0][5] - 5.0*plg[0][4])/6.0;
+/* plg[0][7] = (13.0*c*plg[0][6] - 6.0*plg[0][5])/7.0; */
+ plg[1][1] = s;
+ plg[1][2] = 3.0*c*s;
+ plg[1][3] = 1.5*(5.0*c2-1.0)*s;
+ plg[1][4] = 2.5*(7.0*c2*c-3.0*c)*s;
+ plg[1][5] = 1.875*(21.0*c4 - 14.0*c2 +1.0)*s;
+ plg[1][6] = (11.0*c*plg[1][5]-6.0*plg[1][4])/5.0;
+/* plg[1][7] = (13.0*c*plg[1][6]-7.0*plg[1][5])/6.0; */
+/* plg[1][8] = (15.0*c*plg[1][7]-8.0*plg[1][6])/7.0; */
+ plg[2][2] = 3.0*s2;
+ plg[2][3] = 15.0*s2*c;
+ plg[2][4] = 7.5*(7.0*c2 -1.0)*s2;
+ plg[2][5] = 3.0*c*plg[2][4]-2.0*plg[2][3];
+ plg[2][6] =(11.0*c*plg[2][5]-7.0*plg[2][4])/4.0;
+ plg[2][7] =(13.0*c*plg[2][6]-8.0*plg[2][5])/5.0;
+ plg[3][3] = 15.0*s2*s;
+ plg[3][4] = 105.0*s2*s*c;
+ plg[3][5] =(9.0*c*plg[3][4]-7.*plg[3][3])/2.0;
+ plg[3][6] =(11.0*c*plg[3][5]-8.*plg[3][4])/3.0;
+
+ if (!(((flags->sw[7]==0)&&(flags->sw[8]==0))&&(flags->sw[14]==0))) {
+ stloc = sin(hr*tloc);
+ ctloc = cos(hr*tloc);
+ s2tloc = sin(2.0*hr*tloc);
+ c2tloc = cos(2.0*hr*tloc);
+ s3tloc = sin(3.0*hr*tloc);
+ c3tloc = cos(3.0*hr*tloc);
+ }
+
+ cd32 = cos(dr*(input->doy-p[31]));
+ cd18 = cos(2.0*dr*(input->doy-p[17]));
+ cd14 = cos(dr*(input->doy-p[13]));
+ cd39 = cos(2.0*dr*(input->doy-p[38]));
+ p32=p[31];
+ p18=p[17];
+ p14=p[13];
+ p39=p[38];
+
+ /* F10.7 EFFECT */
+ df = input->f107 - input->f107A;
+ dfa = input->f107A - 150.0;
+ t[0] = p[19]*df*(1.0+p[59]*dfa) + p[20]*df*df + p[21]*dfa + p[29]*pow(dfa,2.0);
+ f1 = 1.0 + (p[47]*dfa +p[19]*df+p[20]*df*df)*flags->swc[1];
+ f2 = 1.0 + (p[49]*dfa+p[19]*df+p[20]*df*df)*flags->swc[1];
+
+ /* TIME INDEPENDENT */
+ t[1] = (p[1]*plg[0][2]+ p[2]*plg[0][4]+p[22]*plg[0][6]) + \
+ (p[14]*plg[0][2])*dfa*flags->swc[1] +p[26]*plg[0][1];
+
+ /* SYMMETRICAL ANNUAL */
+ t[2] = p[18]*cd32;
+
+ /* SYMMETRICAL SEMIANNUAL */
+ t[3] = (p[15]+p[16]*plg[0][2])*cd18;
+
+ /* ASYMMETRICAL ANNUAL */
+ t[4] = f1*(p[9]*plg[0][1]+p[10]*plg[0][3])*cd14;
+
+ /* ASYMMETRICAL SEMIANNUAL */
+ t[5] = p[37]*plg[0][1]*cd39;
+
+ /* DIURNAL */
+ if (flags->sw[7]) {
+ double t71, t72;
+ t71 = (p[11]*plg[1][2])*cd14*flags->swc[5];
+ t72 = (p[12]*plg[1][2])*cd14*flags->swc[5];
+ t[6] = f2*((p[3]*plg[1][1] + p[4]*plg[1][3] + p[27]*plg[1][5] + t71) * \
+ ctloc + (p[6]*plg[1][1] + p[7]*plg[1][3] + p[28]*plg[1][5] \
+ + t72)*stloc);
+}
+
+ /* SEMIDIURNAL */
+ if (flags->sw[8]) {
+ double t81, t82;
+ t81 = (p[23]*plg[2][3]+p[35]*plg[2][5])*cd14*flags->swc[5];
+ t82 = (p[33]*plg[2][3]+p[36]*plg[2][5])*cd14*flags->swc[5];
+ t[7] = f2*((p[5]*plg[2][2]+ p[41]*plg[2][4] + t81)*c2tloc +(p[8]*plg[2][2] + p[42]*plg[2][4] + t82)*s2tloc);
+ }
+
+ /* TERDIURNAL */
+ if (flags->sw[14]) {
+ t[13] = f2 * ((p[39]*plg[3][3]+(p[93]*plg[3][4]+p[46]*plg[3][6])*cd14*flags->swc[5])* s3tloc +(p[40]*plg[3][3]+(p[94]*plg[3][4]+p[48]*plg[3][6])*cd14*flags->swc[5])* c3tloc);
+}
+
+ /* magnetic activity based on daily ap */
+ if (flags->sw[9]==-1) {
+ ap = input->ap_a;
+ if (p[51]!=0) {
+ double exp1;
+ exp1 = exp(-10800.0*sqrt(p[51]*p[51])/(1.0+p[138]*(45.0-sqrt(input->g_lat*input->g_lat))));
+ if (exp1>0.99999)
+ exp1=0.99999;
+ if (p[24]<1.0E-4)
+ p[24]=1.0E-4;
+ apt[0]=sg0(exp1,p,ap->a);
+ /* apt[1]=sg2(exp1,p,ap->a);
+ apt[2]=sg0(exp2,p,ap->a);
+ apt[3]=sg2(exp2,p,ap->a);
+ */
+ if (flags->sw[9]) {
+ t[8] = apt[0]*(p[50]+p[96]*plg[0][2]+p[54]*plg[0][4]+ \
+ (p[125]*plg[0][1]+p[126]*plg[0][3]+p[127]*plg[0][5])*cd14*flags->swc[5]+ \
+ (p[128]*plg[1][1]+p[129]*plg[1][3]+p[130]*plg[1][5])*flags->swc[7]* \
+ cos(hr*(tloc-p[131])));
+ }
+ }
+ } else {
+ double p44, p45;
+ apd=input->ap-4.0;
+ p44=p[43];
+ p45=p[44];
+ if (p44<0)
+ p44 = 1.0E-5;
+ apdf = apd + (p45-1.0)*(apd + (exp(-p44 * apd) - 1.0)/p44);
+ if (flags->sw[9]) {
+ t[8]=apdf*(p[32]+p[45]*plg[0][2]+p[34]*plg[0][4]+ \
+ (p[100]*plg[0][1]+p[101]*plg[0][3]+p[102]*plg[0][5])*cd14*flags->swc[5]+
+ (p[121]*plg[1][1]+p[122]*plg[1][3]+p[123]*plg[1][5])*flags->swc[7]*
+ cos(hr*(tloc-p[124])));
+ }
+ }
+
+ if ((flags->sw[10])&&(input->g_long>-1000.0)) {
+
+ /* longitudinal */
+ if (flags->sw[11]) {
+ t[10] = (1.0 + p[80]*dfa*flags->swc[1])* \
+ ((p[64]*plg[1][2]+p[65]*plg[1][4]+p[66]*plg[1][6]\
+ +p[103]*plg[1][1]+p[104]*plg[1][3]+p[105]*plg[1][5]\
+ +flags->swc[5]*(p[109]*plg[1][1]+p[110]*plg[1][3]+p[111]*plg[1][5])*cd14)* \
+ cos(dgtr*input->g_long) \
+ +(p[90]*plg[1][2]+p[91]*plg[1][4]+p[92]*plg[1][6]\
+ +p[106]*plg[1][1]+p[107]*plg[1][3]+p[108]*plg[1][5]\
+ +flags->swc[5]*(p[112]*plg[1][1]+p[113]*plg[1][3]+p[114]*plg[1][5])*cd14)* \
+ sin(dgtr*input->g_long));
+ }
+
+ /* ut and mixed ut, longitude */
+ if (flags->sw[12]){
+ t[11]=(1.0+p[95]*plg[0][1])*(1.0+p[81]*dfa*flags->swc[1])*\
+ (1.0+p[119]*plg[0][1]*flags->swc[5]*cd14)*\
+ ((p[68]*plg[0][1]+p[69]*plg[0][3]+p[70]*plg[0][5])*\
+ cos(sr*(input->sec-p[71])));
+ t[11]+=flags->swc[11]*\
+ (p[76]*plg[2][3]+p[77]*plg[2][5]+p[78]*plg[2][7])*\
+ cos(sr*(input->sec-p[79])+2.0*dgtr*input->g_long)*(1.0+p[137]*dfa*flags->swc[1]);
+ }
+
+ /* ut, longitude magnetic activity */
+ if (flags->sw[13]) {
+ if (flags->sw[9]==-1) {
+ if (p[51]) {
+ t[12]=apt[0]*flags->swc[11]*(1.+p[132]*plg[0][1])*\
+ ((p[52]*plg[1][2]+p[98]*plg[1][4]+p[67]*plg[1][6])*\
+ cos(dgtr*(input->g_long-p[97])))\
+ +apt[0]*flags->swc[11]*flags->swc[5]*\
+ (p[133]*plg[1][1]+p[134]*plg[1][3]+p[135]*plg[1][5])*\
+ cd14*cos(dgtr*(input->g_long-p[136])) \
+ +apt[0]*flags->swc[12]* \
+ (p[55]*plg[0][1]+p[56]*plg[0][3]+p[57]*plg[0][5])*\
+ cos(sr*(input->sec-p[58]));
+ }
+ } else {
+ t[12] = apdf*flags->swc[11]*(1.0+p[120]*plg[0][1])*\
+ ((p[60]*plg[1][2]+p[61]*plg[1][4]+p[62]*plg[1][6])*\
+ cos(dgtr*(input->g_long-p[63])))\
+ +apdf*flags->swc[11]*flags->swc[5]* \
+ (p[115]*plg[1][1]+p[116]*plg[1][3]+p[117]*plg[1][5])* \
+ cd14*cos(dgtr*(input->g_long-p[118])) \
+ + apdf*flags->swc[12]* \
+ (p[83]*plg[0][1]+p[84]*plg[0][3]+p[85]*plg[0][5])* \
+ cos(sr*(input->sec-p[75]));
+ }
+ }
+ }
+
+ /* parms not used: 82, 89, 99, 139-149 */
+ tinf = p[30];
+ for (i=0;i<14;i++)
+ tinf = tinf + abs(flags->sw[i+1])*t[i];
+ return tinf;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- GLOB7S ---------------------------- */
+/* ------------------------------------------------------------------- */
+
+double glob7s(double *p, struct nrlmsise_input *input, struct nrlmsise_flags *flags) {
+/* VERSION OF GLOBE FOR LOWER ATMOSPHERE 10/26/99
+ */
+ double pset=2.0;
+ double t[14];
+ double tt;
+ double cd32, cd18, cd14, cd39;
+ double p32, p18, p14, p39;
+ int i,j;
+ double dr=1.72142E-2;
+ double dgtr=1.74533E-2;
+ /* confirm parameter set */
+ if (p[99]==0)
+ p[99]=pset;
+ if (p[99]!=pset) {
+ printf("Wrong parameter set for glob7s\n");
+ return -1;
+ }
+ for (j=0;j<14;j++)
+ t[j]=0.0;
+ cd32 = cos(dr*(input->doy-p[31]));
+ cd18 = cos(2.0*dr*(input->doy-p[17]));
+ cd14 = cos(dr*(input->doy-p[13]));
+ cd39 = cos(2.0*dr*(input->doy-p[38]));
+ p32=p[31];
+ p18=p[17];
+ p14=p[13];
+ p39=p[38];
+
+ /* F10.7 */
+ t[0] = p[21]*dfa;
+
+ /* time independent */
+ t[1]=p[1]*plg[0][2] + p[2]*plg[0][4] + p[22]*plg[0][6] + p[26]*plg[0][1] + p[14]*plg[0][3] + p[59]*plg[0][5];
+
+ /* SYMMETRICAL ANNUAL */
+ t[2]=(p[18]+p[47]*plg[0][2]+p[29]*plg[0][4])*cd32;
+
+ /* SYMMETRICAL SEMIANNUAL */
+ t[3]=(p[15]+p[16]*plg[0][2]+p[30]*plg[0][4])*cd18;
+
+ /* ASYMMETRICAL ANNUAL */
+ t[4]=(p[9]*plg[0][1]+p[10]*plg[0][3]+p[20]*plg[0][5])*cd14;
+
+ /* ASYMMETRICAL SEMIANNUAL */
+ t[5]=(p[37]*plg[0][1])*cd39;
+
+ /* DIURNAL */
+ if (flags->sw[7]) {
+ double t71, t72;
+ t71 = p[11]*plg[1][2]*cd14*flags->swc[5];
+ t72 = p[12]*plg[1][2]*cd14*flags->swc[5];
+ t[6] = ((p[3]*plg[1][1] + p[4]*plg[1][3] + t71) * ctloc + (p[6]*plg[1][1] + p[7]*plg[1][3] + t72) * stloc) ;
+ }
+
+ /* SEMIDIURNAL */
+ if (flags->sw[8]) {
+ double t81, t82;
+ t81 = (p[23]*plg[2][3]+p[35]*plg[2][5])*cd14*flags->swc[5];
+ t82 = (p[33]*plg[2][3]+p[36]*plg[2][5])*cd14*flags->swc[5];
+ t[7] = ((p[5]*plg[2][2] + p[41]*plg[2][4] + t81) * c2tloc + (p[8]*plg[2][2] + p[42]*plg[2][4] + t82) * s2tloc);
+ }
+
+ /* TERDIURNAL */
+ if (flags->sw[14]) {
+ t[13] = p[39] * plg[3][3] * s3tloc + p[40] * plg[3][3] * c3tloc;
+ }
+
+ /* MAGNETIC ACTIVITY */
+ if (flags->sw[9]) {
+ if (flags->sw[9]==1)
+ t[8] = apdf * (p[32] + p[45] * plg[0][2] * flags->swc[2]);
+ if (flags->sw[9]==-1)
+ t[8]=(p[50]*apt[0] + p[96]*plg[0][2] * apt[0]*flags->swc[2]);
+ }
+
+ /* LONGITUDINAL */
+ if (!((flags->sw[10]==0) || (flags->sw[11]==0) || (input->g_long<=-1000.0))) {
+ t[10] = (1.0 + plg[0][1]*(p[80]*flags->swc[5]*cos(dr*(input->doy-p[81]))\
+ +p[85]*flags->swc[6]*cos(2.0*dr*(input->doy-p[86])))\
+ +p[83]*flags->swc[3]*cos(dr*(input->doy-p[84]))\
+ +p[87]*flags->swc[4]*cos(2.0*dr*(input->doy-p[88])))\
+ *((p[64]*plg[1][2]+p[65]*plg[1][4]+p[66]*plg[1][6]\
+ +p[74]*plg[1][1]+p[75]*plg[1][3]+p[76]*plg[1][5]\
+ )*cos(dgtr*input->g_long)\
+ +(p[90]*plg[1][2]+p[91]*plg[1][4]+p[92]*plg[1][6]\
+ +p[77]*plg[1][1]+p[78]*plg[1][3]+p[79]*plg[1][5]\
+ )*sin(dgtr*input->g_long));
+ }
+ tt=0;
+ for (i=0;i<14;i++)
+ tt+=abs(flags->sw[i+1])*t[i];
+ return tt;
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- GTD7 ------------------------------ */
+/* ------------------------------------------------------------------- */
+
+void gtd7(struct nrlmsise_input *input, struct nrlmsise_flags *flags, struct nrlmsise_output *output) {
+ double xlat;
+ double xmm;
+ int mn3 = 5;
+ double zn3[5]={32.5,20.0,15.0,10.0,0.0};
+ int mn2 = 4;
+ double zn2[4]={72.5,55.0,45.0,32.5};
+ double altt;
+ double zmix=62.5;
+ double tmp;
+ double dm28m;
+ double tz;
+ double dmc;
+ double dmr;
+ double dz28;
+ struct nrlmsise_output soutput;
+ int i;
+
+ tselec(flags);
+
+ /* Latitude variation of gravity (none for sw[2]=0) */
+ xlat=input->g_lat;
+ if (flags->sw[2]==0)
+ xlat=45.0;
+ glatf(xlat, &gsurf, &re);
+
+ xmm = pdm[2][4];
+
+ /* THERMOSPHERE / MESOSPHERE (above zn2[0]) */
+ if (input->alt>zn2[0])
+ altt=input->alt;
+ else
+ altt=zn2[0];
+
+ tmp=input->alt;
+ input->alt=altt;
+ gts7(input, flags, &soutput);
+ altt=input->alt;
+ input->alt=tmp;
+ if (flags->sw[0]) /* metric adjustment */
+ dm28m=dm28*1.0E6;
+ else
+ dm28m=dm28;
+ output->t[0]=soutput.t[0];
+ output->t[1]=soutput.t[1];
+ if (input->alt>=zn2[0]) {
+ for (i=0;i<9;i++)
+ output->d[i]=soutput.d[i];
+ return;
+ }
+
+/* LOWER MESOSPHERE/UPPER STRATOSPHERE (between zn3[0] and zn2[0])
+ * Temperature at nodes and gradients at end nodes
+ * Inverse temperature a linear function of spherical harmonics
+ */
+ meso_tgn2[0]=meso_tgn1[1];
+ meso_tn2[0]=meso_tn1[4];
+ meso_tn2[1]=pma[0][0]*pavgm[0]/(1.0-flags->sw[20]*glob7s(pma[0], input, flags));
+ meso_tn2[2]=pma[1][0]*pavgm[1]/(1.0-flags->sw[20]*glob7s(pma[1], input, flags));
+ meso_tn2[3]=pma[2][0]*pavgm[2]/(1.0-flags->sw[20]*flags->sw[22]*glob7s(pma[2], input, flags));
+ meso_tgn2[1]=pavgm[8]*pma[9][0]*(1.0+flags->sw[20]*flags->sw[22]*glob7s(pma[9], input, flags))*meso_tn2[3]*meso_tn2[3]/(pow((pma[2][0]*pavgm[2]),2.0));
+ meso_tn3[0]=meso_tn2[3];
+
+ if (input->alt<zn3[0]) {
+/* LOWER STRATOSPHERE AND TROPOSPHERE (below zn3[0])
+ * Temperature at nodes and gradients at end nodes
+ * Inverse temperature a linear function of spherical harmonics
+ */
+ meso_tgn3[0]=meso_tgn2[1];
+ meso_tn3[1]=pma[3][0]*pavgm[3]/(1.0-flags->sw[22]*glob7s(pma[3], input, flags));
+ meso_tn3[2]=pma[4][0]*pavgm[4]/(1.0-flags->sw[22]*glob7s(pma[4], input, flags));
+ meso_tn3[3]=pma[5][0]*pavgm[5]/(1.0-flags->sw[22]*glob7s(pma[5], input, flags));
+ meso_tn3[4]=pma[6][0]*pavgm[6]/(1.0-flags->sw[22]*glob7s(pma[6], input, flags));
+ meso_tgn3[1]=pma[7][0]*pavgm[7]*(1.0+flags->sw[22]*glob7s(pma[7], input, flags)) *meso_tn3[4]*meso_tn3[4]/(pow((pma[6][0]*pavgm[6]),2.0));
+ }
+
+ /* LINEAR TRANSITION TO FULL MIXING BELOW zn2[0] */
+
+ dmc=0;
+ if (input->alt>zmix)
+ dmc = 1.0 - (zn2[0]-input->alt)/(zn2[0] - zmix);
+ dz28=soutput.d[2];
+
+ /**** N2 density ****/
+ dmr=soutput.d[2] / dm28m - 1.0;
+ output->d[2]=densm(input->alt,dm28m,xmm, &tz, mn3, zn3, meso_tn3, meso_tgn3, mn2, zn2, meso_tn2, meso_tgn2);
+ output->d[2]=output->d[2] * (1.0 + dmr*dmc);
+
+ /**** HE density ****/
+ dmr = soutput.d[0] / (dz28 * pdm[0][1]) - 1.0;
+ output->d[0] = output->d[2] * pdm[0][1] * (1.0 + dmr*dmc);
+
+ /**** O density ****/
+ output->d[1] = 0;
+ output->d[8] = 0;
+
+ /**** O2 density ****/
+ dmr = soutput.d[3] / (dz28 * pdm[3][1]) - 1.0;
+ output->d[3] = output->d[2] * pdm[3][1] * (1.0 + dmr*dmc);
+
+ /**** AR density ***/
+ dmr = soutput.d[4] / (dz28 * pdm[4][1]) - 1.0;
+ output->d[4] = output->d[2] * pdm[4][1] * (1.0 + dmr*dmc);
+
+ /**** Hydrogen density ****/
+ output->d[6] = 0;
+
+ /**** Atomic nitrogen density ****/
+ output->d[7] = 0;
+
+ /**** Total mass density */
+ output->d[5] = 1.66E-24 * (4.0 * output->d[0] + 16.0 * output->d[1] + 28.0 * output->d[2] + 32.0 * output->d[3] + 40.0 * output->d[4] + output->d[6] + 14.0 * output->d[7]);
+
+ if (flags->sw[0])
+ output->d[5]=output->d[5]/1000;
+
+ /**** temperature at altitude ****/
+ dd = densm(input->alt, 1.0, 0, &tz, mn3, zn3, meso_tn3, meso_tgn3, mn2, zn2, meso_tn2, meso_tgn2);
+ output->t[1]=tz;
+
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- GTD7D ----------------------------- */
+/* ------------------------------------------------------------------- */
+
+void gtd7d(struct nrlmsise_input *input, struct nrlmsise_flags *flags, struct nrlmsise_output *output) {
+ gtd7(input, flags, output);
+ output->d[5] = 1.66E-24 * (4.0 * output->d[0] + 16.0 * output->d[1] + 28.0 * output->d[2] + 32.0 * output->d[3] + 40.0 * output->d[4] + output->d[6] + 14.0 * output->d[7] + 16.0 * output->d[8]);
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* -------------------------------- GHP7 ----------------------------- */
+/* ------------------------------------------------------------------- */
+
+void ghp7(struct nrlmsise_input *input, struct nrlmsise_flags *flags, struct nrlmsise_output *output, double press) {
+ double bm = 1.3806E-19;
+ double rgas = 831.4;
+ double test = 0.00043;
+ double ltest = 12;
+ double pl, p;
+ double zi;
+ double z;
+ double cl, cl2;
+ double ca, cd;
+ double xn, xm, diff;
+ double g, sh;
+ int l;
+ pl = log10(press);
+ if (pl >= -5.0) {
+ if (pl>2.5)
+ zi = 18.06 * (3.00 - pl);
+ else if ((pl>0.075) && (pl<=2.5))
+ zi = 14.98 * (3.08 - pl);
+ else if ((pl>-1) && (pl<=0.075))
+ zi = 17.80 * (2.72 - pl);
+ else if ((pl>-2) && (pl<=-1))
+ zi = 14.28 * (3.64 - pl);
+ else if ((pl>-4) && (pl<=-2))
+ zi = 12.72 * (4.32 -pl);
+ else if (pl<=-4)
+ zi = 25.3 * (0.11 - pl);
+ cl = input->g_lat/90.0;
+ cl2 = cl*cl;
+ if (input->doy<182)
+ cd = (1.0 - (double) input->doy) / 91.25;
+ else
+ cd = ((double) input->doy) / 91.25 - 3.0;
+ ca = 0;
+ if ((pl > -1.11) && (pl<=-0.23))
+ ca = 1.0;
+ if (pl > -0.23)
+ ca = (2.79 - pl) / (2.79 + 0.23);
+ if ((pl <= -1.11) && (pl>-3))
+ ca = (-2.93 - pl)/(-2.93 + 1.11);
+ z = zi - 4.87 * cl * cd * ca - 1.64 * cl2 * ca + 0.31 * ca * cl;
+ } else
+ z = 22.0 * pow((pl + 4.0),2.0) + 110.0;
+
+ /* iteration loop */
+ l = 0;
+ do {
+ l++;
+ input->alt = z;
+ gtd7(input, flags, output);
+ z = input->alt;
+ xn = output->d[0] + output->d[1] + output->d[2] + output->d[3] + output->d[4] + output->d[6] + output->d[7];
+ p = bm * xn * output->t[1];
+ if (flags->sw[0])
+ p = p*1.0E-6;
+ diff = pl - log10(p);
+ if (sqrt(diff*diff)<test)
+ return;
+ if (l==ltest) {
+ printf("ERROR: ghp7 not converging for press %e, diff %e",press,diff);
+ return;
+ }
+ xm = output->d[5] / xn / 1.66E-24;
+ if (flags->sw[0])
+ xm = xm * 1.0E3;
+ g = gsurf / (pow((1.0 + z/re),2.0));
+ sh = rgas * output->t[1] / (xm * g);
+
+ /* new altitude estimate using scale height */
+ if (l < 6)
+ z = z - sh * diff * 2.302;
+ else
+ z = z - sh * diff;
+ } while (1==1);
+}
+
+
+
+/* ------------------------------------------------------------------- */
+/* ------------------------------- GTS7 ------------------------------ */
+/* ------------------------------------------------------------------- */
+
+void gts7(struct nrlmsise_input *input, struct nrlmsise_flags *flags, struct nrlmsise_output *output) {
+/* Thermospheric portion of NRLMSISE-00
+ * See GTD7 for more extensive comments
+ * alt > 72.5 km!
+ */
+ double za;
+ int i, j;
+ double ddum, z;
+ double zn1[5] = {120.0, 110.0, 100.0, 90.0, 72.5};
+ double tinf;
+ int mn1 = 5;
+ double g0;
+ double tlb;
+ double s, z0, t0, tr12;
+ double db01, db04, db14, db16, db28, db32, db40, db48;
+ double zh28, zh04, zh16, zh32, zh40, zh01, zh14;
+ double zhm28, zhm04, zhm16, zhm32, zhm40, zhm01, zhm14;
+ double xmd;
+ double b28, b04, b16, b32, b40, b01, b14;
+ double tz;
+ double g28, g4, g16, g32, g40, g1, g14;
+ double zhf, xmm;
+ double zc04, zc16, zc32, zc40, zc01, zc14;
+ double uc04;
+ double hc04, hc16, hc32, hc40, hc01, hc14;
+ double hcc16, hcc32, hcc01, hcc14;
+ double zcc16, zcc32, zcc01, zcc14;
+ double rc16, rc32, rc01, rc14;
+ double rl;
+ double g16h, db16h, tho, zsht, zmho, zsho;
+ double dgtr=1.74533E-2;
+ double dr=1.72142E-2;
+ double alpha[9]={-0.38, 0.0, 0.0, 0.0, 0.17, 0.0, -0.38, 0.0, 0.0};
+ double altl[8]={200.0, 300.0, 160.0, 250.0, 240.0, 450.0, 320.0, 450.0};
+ double dd;
+ za = pdl[1][15];
+ zn1[0] = za;
+ for (j=0;j<9;j++)
+ output->d[j]=0;
+
+ /* TINF VARIATIONS NOT IMPORTANT BELOW ZA OR ZN1(1) */
+ if (input->alt>zn1[0])
+ tinf = ptm[0]*pt[0] * \
+ (1.0+flags->sw[16]*globe7(pt,input,flags));
+ else
+ tinf = ptm[0]*pt[0];
+ output->t[0]=tinf;
+
+ /* GRADIENT VARIATIONS NOT IMPORTANT BELOW ZN1(5) */
+ if (input->alt>zn1[4])
+ g0 = ptm[3]*ps[0] * \
+ (1.0+flags->sw[19]*globe7(ps,input,flags));
+ else
+ g0 = ptm[3]*ps[0];
+ tlb = ptm[1] * (1.0 + flags->sw[17]*globe7(pd[3],input,flags))*pd[3][0];
+ s = g0 / (tinf - tlb);
+
+/* Lower thermosphere temp variations not significant for
+ * density above 300 km */
+ if (input->alt<300.0) {
+ meso_tn1[1]=ptm[6]*ptl[0][0]/(1.0-flags->sw[18]*glob7s(ptl[0], input, flags));
+ meso_tn1[2]=ptm[2]*ptl[1][0]/(1.0-flags->sw[18]*glob7s(ptl[1], input, flags));
+ meso_tn1[3]=ptm[7]*ptl[2][0]/(1.0-flags->sw[18]*glob7s(ptl[2], input, flags));
+ meso_tn1[4]=ptm[4]*ptl[3][0]/(1.0-flags->sw[18]*flags->sw[20]*glob7s(ptl[3], input, flags));
+ meso_tgn1[1]=ptm[8]*pma[8][0]*(1.0+flags->sw[18]*flags->sw[20]*glob7s(pma[8], input, flags))*meso_tn1[4]*meso_tn1[4]/(pow((ptm[4]*ptl[3][0]),2.0));
+ } else {
+ meso_tn1[1]=ptm[6]*ptl[0][0];
+ meso_tn1[2]=ptm[2]*ptl[1][0];
+ meso_tn1[3]=ptm[7]*ptl[2][0];
+ meso_tn1[4]=ptm[4]*ptl[3][0];
+ meso_tgn1[1]=ptm[8]*pma[8][0]*meso_tn1[4]*meso_tn1[4]/(pow((ptm[4]*ptl[3][0]),2.0));
+ }
+
+ z0 = zn1[3];
+ t0 = meso_tn1[3];
+ tr12 = 1.0;
+
+ /* N2 variation factor at Zlb */
+ g28=flags->sw[21]*globe7(pd[2], input, flags);
+
+ /* VARIATION OF TURBOPAUSE HEIGHT */
+ zhf=pdl[1][24]*(1.0+flags->sw[5]*pdl[0][24]*sin(dgtr*input->g_lat)*cos(dr*(input->doy-pt[13])));
+ output->t[0]=tinf;
+ xmm = pdm[2][4];
+ z = input->alt;
+
+
+ /**** N2 DENSITY ****/
+
+ /* Diffusive density at Zlb */
+ db28 = pdm[2][0]*exp(g28)*pd[2][0];
+ /* Diffusive density at Alt */
+ output->d[2]=densu(z,db28,tinf,tlb,28.0,alpha[2],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ dd=output->d[2];
+ /* Turbopause */
+ zh28=pdm[2][2]*zhf;
+ zhm28=pdm[2][3]*pdl[1][5];
+ xmd=28.0-xmm;
+ /* Mixed density at Zlb */
+ b28=densu(zh28,db28,tinf,tlb,xmd,(alpha[2]-1.0),&tz,ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
+ if ((flags->sw[15])&&(z<=altl[2])) {
+ /* Mixed density at Alt */
+ dm28=densu(z,b28,tinf,tlb,xmm,alpha[2],&tz,ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ /* Net density at Alt */
+ output->d[2]=dnet(output->d[2],dm28,zhm28,xmm,28.0);
+ }
+
+
+ /**** HE DENSITY ****/
+
+ /* Density variation factor at Zlb */
+ g4 = flags->sw[21]*globe7(pd[0], input, flags);
+ /* Diffusive density at Zlb */
+ db04 = pdm[0][0]*exp(g4)*pd[0][0];
+ /* Diffusive density at Alt */
+ output->d[0]=densu(z,db04,tinf,tlb, 4.,alpha[0],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ dd=output->d[0];
+ if ((flags->sw[15]) && (z<=altl[0])) {
+ /* Turbopause */
+ zh04=pdm[0][2];
+ /* Mixed density at Zlb */
+ b04=densu(zh04,db04,tinf,tlb,4.-xmm,alpha[0]-1.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ /* Mixed density at Alt */
+ dm04=densu(z,b04,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ zhm04=zhm28;
+ /* Net density at Alt */
+ output->d[0]=dnet(output->d[0],dm04,zhm04,xmm,4.);
+ /* Correction to specified mixing ratio at ground */
+ rl=log(b28*pdm[0][1]/b04);
+ zc04=pdm[0][4]*pdl[1][0];
+ uc04=pdm[0][5]*pdl[1][1];
+ /* Net density corrected at Alt */
+ output->d[0]=output->d[0]*ccor(z,rl,hc04,zc04);
+ }
+
+
+ /**** O DENSITY ****/
+
+ /* Density variation factor at Zlb */
+ g16= flags->sw[21]*globe7(pd[1],input,flags);
+ /* Diffusive density at Zlb */
+ db16 = pdm[1][0]*exp(g16)*pd[1][0];
+ /* Diffusive density at Alt */
+ output->d[1]=densu(z,db16,tinf,tlb, 16.,alpha[1],&output->t[1],ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
+ dd=output->d[1];
+ if ((flags->sw[15]) && (z<=altl[1])) {
+ /* Turbopause */
+ zh16=pdm[1][2];
+ /* Mixed density at Zlb */
+ b16=densu(zh16,db16,tinf,tlb,16.0-xmm,(alpha[1]-1.0), &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ /* Mixed density at Alt */
+ dm16=densu(z,b16,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ zhm16=zhm28;
+ /* Net density at Alt */
+ output->d[1]=dnet(output->d[1],dm16,zhm16,xmm,16.);
+ rl=pdm[1][1]*pdl[1][16]*(1.0+flags->sw[1]*pdl[0][23]*(input->f107A-150.0));
+ hc16=pdm[1][5]*pdl[1][3];
+ zc16=pdm[1][4]*pdl[1][2];
+ output->d[1]=output->d[1]*ccor(z,rl,hc16,zc16);
+ /* Chemistry correction */
+ hcc16=pdm[1][7]*pdl[1][13];
+ zcc16=pdm[1][6]*pdl[1][12];
+ rc16=pdm[1][3]*pdl[1][14];
+ /* Net density corrected at Alt */
+ output->d[1]=output->d[1]*ccor(z,rc16,hcc16,zcc16);
+ }
+
+
+ /**** O2 DENSITY ****/
+
+ /* Density variation factor at Zlb */
+ g32= flags->sw[21]*globe7(pd[4], input, flags);
+ /* Diffusive density at Zlb */
+ db32 = pdm[3][0]*exp(g32)*pd[4][0];
+ /* Diffusive density at Alt */
+ output->d[3]=densu(z,db32,tinf,tlb, 32.,alpha[3],&output->t[1],ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
+ dd=output->d[3];
+ if (flags->sw[15]) {
+ if (z<=altl[3]) {
+ /* Turbopause */
+ zh32=pdm[3][2];
+ /* Mixed density at Zlb */
+ b32=densu(zh32,db32,tinf,tlb,32.-xmm,alpha[3]-1., &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ /* Mixed density at Alt */
+ dm32=densu(z,b32,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ zhm32=zhm28;
+ /* Net density at Alt */
+ output->d[3]=dnet(output->d[3],dm32,zhm32,xmm,32.);
+ /* Correction to specified mixing ratio at ground */
+ rl=log(b28*pdm[3][1]/b32);
+ hc32=pdm[3][5]*pdl[1][7];
+ zc32=pdm[3][4]*pdl[1][6];
+ output->d[3]=output->d[3]*ccor(z,rl,hc32,zc32);
+ }
+ /* Correction for general departure from diffusive equilibrium above Zlb */
+ hcc32=pdm[3][7]*pdl[1][22];
+ zcc32=pdm[3][6]*pdl[1][21];
+ rc32=pdm[3][3]*pdl[1][23]*(1.+flags->sw[1]*pdl[0][23]*(input->f107A-150.));
+ /* Net density corrected at Alt */
+ output->d[3]=output->d[3]*ccor(z,rc32,hcc32,zcc32);
+ }
+
+
+ /**** AR DENSITY ****/
+
+ /* Density variation factor at Zlb */
+ g40= flags->sw[20]*globe7(pd[5],input,flags);
+ /* Diffusive density at Zlb */
+ db40 = pdm[4][0]*exp(g40)*pd[5][0];
+ /* Diffusive density at Alt */
+ output->d[4]=densu(z,db40,tinf,tlb, 40.,alpha[4],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ dd=output->d[4];
+ if ((flags->sw[15]) && (z<=altl[4])) {
+ /* Turbopause */
+ zh40=pdm[4][2];
+ /* Mixed density at Zlb */
+ b40=densu(zh40,db40,tinf,tlb,40.-xmm,alpha[4]-1.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ /* Mixed density at Alt */
+ dm40=densu(z,b40,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ zhm40=zhm28;
+ /* Net density at Alt */
+ output->d[4]=dnet(output->d[4],dm40,zhm40,xmm,40.);
+ /* Correction to specified mixing ratio at ground */
+ rl=log(b28*pdm[4][1]/b40);
+ hc40=pdm[4][5]*pdl[1][9];
+ zc40=pdm[4][4]*pdl[1][8];
+ /* Net density corrected at Alt */
+ output->d[4]=output->d[4]*ccor(z,rl,hc40,zc40);
+ }
+
+
+ /**** HYDROGEN DENSITY ****/
+
+ /* Density variation factor at Zlb */
+ g1 = flags->sw[21]*globe7(pd[6], input, flags);
+ /* Diffusive density at Zlb */
+ db01 = pdm[5][0]*exp(g1)*pd[6][0];
+ /* Diffusive density at Alt */
+ output->d[6]=densu(z,db01,tinf,tlb,1.,alpha[6],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ dd=output->d[6];
+ if ((flags->sw[15]) && (z<=altl[6])) {
+ /* Turbopause */
+ zh01=pdm[5][2];
+ /* Mixed density at Zlb */
+ b01=densu(zh01,db01,tinf,tlb,1.-xmm,alpha[6]-1., &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ /* Mixed density at Alt */
+ dm01=densu(z,b01,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ zhm01=zhm28;
+ /* Net density at Alt */
+ output->d[6]=dnet(output->d[6],dm01,zhm01,xmm,1.);
+ /* Correction to specified mixing ratio at ground */
+ rl=log(b28*pdm[5][1]*sqrt(pdl[1][17]*pdl[1][17])/b01);
+ hc01=pdm[5][5]*pdl[1][11];
+ zc01=pdm[5][4]*pdl[1][10];
+ output->d[6]=output->d[6]*ccor(z,rl,hc01,zc01);
+ /* Chemistry correction */
+ hcc01=pdm[5][7]*pdl[1][19];
+ zcc01=pdm[5][6]*pdl[1][18];
+ rc01=pdm[5][3]*pdl[1][20];
+ /* Net density corrected at Alt */
+ output->d[6]=output->d[6]*ccor(z,rc01,hcc01,zcc01);
+}
+
+
+ /**** ATOMIC NITROGEN DENSITY ****/
+
+ /* Density variation factor at Zlb */
+ g14 = flags->sw[21]*globe7(pd[7],input,flags);
+ /* Diffusive density at Zlb */
+ db14 = pdm[6][0]*exp(g14)*pd[7][0];
+ /* Diffusive density at Alt */
+ output->d[7]=densu(z,db14,tinf,tlb,14.,alpha[7],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ dd=output->d[7];
+ if ((flags->sw[15]) && (z<=altl[7])) {
+ /* Turbopause */
+ zh14=pdm[6][2];
+ /* Mixed density at Zlb */
+ b14=densu(zh14,db14,tinf,tlb,14.-xmm,alpha[7]-1., &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ /* Mixed density at Alt */
+ dm14=densu(z,b14,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
+ zhm14=zhm28;
+ /* Net density at Alt */
+ output->d[7]=dnet(output->d[7],dm14,zhm14,xmm,14.);
+ /* Correction to specified mixing ratio at ground */
+ rl=log(b28*pdm[6][1]*sqrt(pdl[0][2]*pdl[0][2])/b14);
+ hc14=pdm[6][5]*pdl[0][1];
+ zc14=pdm[6][4]*pdl[0][0];
+ output->d[7]=output->d[7]*ccor(z,rl,hc14,zc14);
+ /* Chemistry correction */
+ hcc14=pdm[6][7]*pdl[0][4];
+ zcc14=pdm[6][6]*pdl[0][3];
+ rc14=pdm[6][3]*pdl[0][5];
+ /* Net density corrected at Alt */
+ output->d[7]=output->d[7]*ccor(z,rc14,hcc14,zcc14);
+ }
+
+
+ /**** Anomalous OXYGEN DENSITY ****/
+
+ g16h = flags->sw[21]*globe7(pd[8],input,flags);
+ db16h = pdm[7][0]*exp(g16h)*pd[8][0];
+ tho = pdm[7][9]*pdl[0][6];
+ dd=densu(z,db16h,tho,tho,16.,alpha[8],&output->t[1],ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
+ zsht=pdm[7][5];
+ zmho=pdm[7][4];
+ zsho=scalh(zmho,16.0,tho);
+ output->d[8]=dd*exp(-zsht/zsho*(exp(-(z-zmho)/zsht)-1.));
+
+
+ /* total mass density */
+ output->d[5] = 1.66E-24*(4.0*output->d[0]+16.0*output->d[1]+28.0*output->d[2]+32.0*output->d[3]+40.0*output->d[4]+ output->d[6]+14.0*output->d[7]);
+ db48=1.66E-24*(4.0*db04+16.0*db16+28.0*db28+32.0*db32+40.0*db40+db01+14.0*db14);
+
+
+
+ /* temperature */
+ z = sqrt(input->alt*input->alt);
+ ddum = densu(z,1.0, tinf, tlb, 0.0, 0.0, &output->t[1], ptm[5], s, mn1, zn1, meso_tn1, meso_tgn1);
+ if (flags->sw[0]) {
+ for(i=0;i<9;i++)
+ output->d[i]=output->d[i]*1.0E6;
+ output->d[5]=output->d[5]/1000;
+ }
+}